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SUMMARY

The indirect boundary element method was used to study the hydrodynamics of longitudinal shear flow
and cross flow with a longitudinal rate of shear over prolate and oblate hemispheroidal protuberances
projecting from a plane wall. Analytic techniques such as Fourier analysis, spheroidal co-ordinates, and
the method of images were used to make the numerical methods more efficient. A novel method for
computing the hydrodynamic torque was used—instead of directly calculating the torque from the
weightings of the Green’s functions (a method that is only valid when the weightings have physical
significance) the hydrodynamic torque was computed indirectly using a Green’s function for torque that
derived here. As a test of this method, the present scheme was applied to determine the hydrodynamic
torque of full spheroids, where exact solutions are known, and excellent results were obtained. Our results
for hemispheroids projecting from plane walls were, except for extremely wide oblate hemispheroids,
within a factor of two of those of full spheroids. Our results also agreed with those of previous study of
oblate hemispheroidal protuberances. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many phenomena that occur in fluid flow in natural and artificial structures can be modelled
as that of shear flow over a protuberance that projects from a plane wall. Examples that occur
in artificial structures include flow over a impurity that has been collected on the surface of a
collector, and the flow over an irregularity on a rough surface. The micromechanics of the hair
bundles that project from the sensory epithelium in the cochlea are studied in the MIT
(Massachusetts Institute of Technology) cochlear micromechanics group. Hair bundles exhibit
translational and rotational motion. The translational motion of hair bundles at low frequen-
cies is modeled as longitudinal shear flow over hemispheroids projecting from plane walls. The
rotational motion at low frequencies is modeled as the superposition of longitudinal shear flow
and cross flow with a longitudinal rate of shear.

Studies of longitudinal shear flow over protuberances from plane walls have been carried out
previously in 2D [1–3]. Although 2D studies are numerically efficient, they cannot model 3D
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effects, which can be important in determining the hydrodynamics. There have also been 3D
studies of longitudinal shear flow over protuberances, such as that of O’Neill [4], who derived
an infinite series solution for flow over a full sphere in contact with a plane wall, and that of
Hyman [5] and Price [6], who derived solutions for shear flow over hemispherical bumps.
Recently, Pozrikidis [7] derived solutions for oblate hemispheroidal shapes using a direct
boundary element method (BEM). The direct BEM method has been used in a number of
studies of longitudinal shear flow of an object in the presence of a plane wall [7–10]. The direct
method calculates the hydrodynamic properties directly from the weightings of the Green’s
functions, which represent real, physical quantities.

In this study, the hydrodynamic properties, in particular, the hydrodynamic torques which
result from fluid forces on the protuberances, are calculated indirectly. The indirect method is
more general—it is valid even when the weightings have no physical significance. To use the
indirect method, a Green’s function was derived for the hydrodynamic torque from the known
Green’s functions for hydrodynamic pressure and velocity.

The curvilinear co-ordinate systems, prolate and oblate spheroidal co-ordinates [11,12] were
also used to discretize the domain. The use of curvilinear co-ordinates allows for more efficient
discretization because regions where the boundaries have high spatial frequencies have the
smallest grid spacings. It also allows for more efficient coding with one code describing the full
range of prolate hemispheroids and one code for the full range of oblate hemispheroids. To
further increase the efficiency of the numerical computation Fourier analysis was used to
determine the azimuthal dependence of the weightings, as in a previous study [7]. Therefore,
only a one-dimensional discretization was needed. A modified method of images [8,13] was
used to represent the boundary conditions along the plane so that discretization along the
plane, and the use of artificial boundaries to approximate the behaviour at infinity, were not
required.

To check this method, it was applied to full spheroids with no plane present, for which the
exact solution is known. The hydrodynamic torque was then computed for full range of
prolate and oblate hemispheroidal shapes projecting from plane walls and the results were
compared with those for full spheroids [14], and the results for longitudinal shear flow over
oblate hemispheroids were compared with those of Pozrikidis [7].

2. PROBLEM FORMULATION

A hemispheroid projecting from a plane wall is shown in Figure 1. Incompressible, Stokes’
flow is assumed so that conservation of momentum, and conservation of mass are described
respectively by

Figure 1. Prolate hemispheroid projecting from a plane wall.
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9P(r)=m92U(r), (1)

and

9 ·U(r)=0, (2)

where P(r) represents fluid pressure, U(r), fluid velocity, and m, fluid viscosity. For longitudinal
flow, the boundary conditions along the plane wall and hemispheroid are given by

U(r=r%)=0, (3)

U(r��)= −Vz x̂, (4)

where r% represents a vector to a point on the boundaries, V represents the angular velocity of
the flow, and x̂ represents a unit vector in the x-direction. For cross flow, the boundary
conditions are given by

U(r=r%)=0, (5)

U(r��)= −Vx ẑ. (6)

The torque on the hemispheroid is given by

T=
&

S

r×dF(r), (7)

where

dF(r)= −P(r) dS+m dS ·9U(r)+m9(dS ·U(r)). (8)

r represents a vector to a point on the surface of the hemispheroid, S represents the surface,
and dS is in the normal direction to the surface. Due to the reflection symmetry about the
x–z-plane, the torque has only a y component.

Reference frames can be shifted so that the fluid is stationary at infinity. For this frame of
reference, the equations of motion remain the same while the boundary conditions can be
expressed as

U(r=r%)=Vz x̂, (9)

U(r��)=0, (10)

for longitudinal flow, and for cross flow

U(r=r%)=Vx ẑ, (11)

U(r��)=0, (12)

The pressure and the torque are the same for either frame of reference, because for
longitudinal flow

m92(Vz x̂)=0,

and

T=
&

S

(r× (m9(n̂ ·Vz x̂))+m(n̂ ·9)Vz x̂)) dS=0, (13)

and cross flow

m92(Vx ẑ)=0,

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 961–981 (1998)
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Figure 2. Left: A surface of constant r describes a sphere, and a surface of constant u describes a half-cone in spherical
co-ordinates. Right: A surface of constant j describes a spheroid, and a surface of constant h describes a hyperboloid

in spheroidal co-ordinates.

and

T=
&

S

(r× (m9(n̂ ·Vx ẑ))+m(n̂ ·9)Vx ẑ)) dS=0,

where n̂ represents a unit normal to the surface. (See Appendix A for the derivation of
Equation (13).)

The hydrodynamic quantities will be solved using spheroidal co-ordinates and an indirect
BEM method.

3. SPHEROIDAL CO-ORDINATES

We chose to use spheroidal co-ordinates where the hemispheroid and plane wall are co-ordi-
nate surfaces. Spheroidal co-ordinates, represented by j, h and f, are similar to spherical
co-ordinates, represented by r, u and f. As with a sphere, a cross-section of a spheroid parallel
to the x–y-plane has the shape of a circle; however, a cross-section of a spheroid perpendicular
to the x–y-plane has the shape of an ellipse. There are two types of spheroids—prolate and
oblate. For prolate spheroids, the heights of the cross-sectional ellipses are larger than the
widths; for oblate spheroids, the converse is true. Figure 2 illustrates the similarities and
differences between spheroidal and spherical co-ordinates. Spheroidal co-ordinates [11,12] are
defined for prolate spheroidal co-ordinates as

x=L sinh j sin h cos f, y=L sinh j sin h sin f, z=L cosh j cos h, (14)

and for oblate spheroidal co-ordinates as

x=L cosh j sin h cos f, y=L cosh j sin h sin f, z=L sinh j cos h, (15)

where L represents the focal length. j ranges from 0 to �, h ranges from 0 to p, and f ranges
from 0 to 2p. An infinitesimal distance is written as

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 961–981 (1998)
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(ds)2= (h1 dj)2+ (h1 dh)2+ (h2 df)2,

where hi are the metric coefficients. For prolate spheroidal co-ordinates, the metric coefficients
are expressed as

h1=L
(sinh2 j+sin2 h),

and

h2=L sinh j sin h.

For oblate spheroidal co-ordinates, h1 and h2 are given by

h1=L
(sinh2 j+cos2 h),

and

h2=L cosh j sin h.

3.1. Hemispheroid and plane wall

To describe a hemispheroid, h is restricted to range from zero to p/2. The tip of the
hemispheroid is at h=0, the base is at h=p/2. Figure 3 illustrates the hemispheroid on a
plane wall in rectangular co-ordinates and in spheroidal co-ordinates. In rectangular co-ordi-
nates, the surface of a prolate hemispheroid is described by

x2+y2

(L sinh jo)2+
z2

(L cosh jo)2=1, for z\0,

and the surface of an oblate hemispheroid,

x2+y2

(L cosh jo)2+
z2

(L sinh jo)2=1, for z\0.

The surface of the plane wall is described by z=0. In prolate or oblate spheroidal co-ordi-
nates, the surface of the hemispheroid is described by j=jo and the surface of the plane wall
is described by h=p/2. So it is clear that the hemispheroid and plane wall are co-ordinate
surfaces in spheroidal co-ordinates.

Figure 3. The hemispheroid on a plane wall is defined by a surface of constant j and the surface h=p/2. The
hemispheroid and plane wall in rectangular co-ordinates (left panel) transform to orthogonal planes in prolate

spheroidal co-ordinates (right panel).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 961–981 (1998)
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4. BOUNDARY ELEMENT METHODS

The BEM is a numerical approximation of the boundary integral or singularity method (BIM),
which represents the solutions to a homogeneous linear differential equation with specified
boundary conditions as a weighted integral of Green’s functions. There are three categories of
BEM: indirect, semi-direct and direct [15]. In the indirect BEM, the weightings have no
physical significance, but can be integrated to find all the real physical quantities. In the
semi-direct BEM, the weightings are not actual physical properties but can be related to
physical properties. In the direct method, the weightings represent actual physical properties.
Although we could have used the direct method to find the hydrodynamic torque, we chose to
calculate the torque indirectly, using a Green’s function for torque.

4.1. Green’s functions for Stokes’ flow

The simplest Green’s functions of Equations (1) and (2) are known as stokeslets [16]. Gux(r),
the x component of the velocity stokeslet due to an impulse, can be expressed as

Gux(r)=
1

8pm

�x̂
r
+

x2x̂+xy ŷ+xz ẑ
r3

�
.

The other components have similar forms. The pressure stokeslet can be expressed as

Gp(r)=
1

4p

�x x̂+y ŷ+z ẑ
r3

�
. (16)

For Stokes flow in the presence of boundary surfaces, the solution for the ith component of
the velocity, where i represents x, y or z, can be expressed as a weighted integral of stokeslets:

Ui(r)=
&

S%

Gui(r, r%) · ffict(r%) dS %,1 (17)

and the pressure as

P(r)=
&

S%

Gp(r, r%) · ffict(r%) dS %. (18)

ffict(r%) represents the weightings of the impulses along the surface. In contrast to the direct
method, ffict(r%), does not represent a real point force and has no physical significance. From
Equations (7) and (8), the torque exerted by the ith component of an impulse on a surface S
surrounding the impulse can be expressed as

GTi(r%)=
&

S

G( Ti(r%, r) dS, (19)

where

G( Ti(r)=r× (n̂Gpi(r)+m9(n̂ ·Gui(r))+m(n̂ ·9)Gui(r)), (20)

and can be considered a Green’s function for torque per unit area. The Green’s function given
in Equations (19) and (20) can be considered as the torque stokeslet; therefore the ith
component of torque can be expressed as

1 This is true because the ith component of a velocity stokeslet due to an in impulse in the jth direction is equal to
the jth component of a velocity stokeslet due to an in impulse in the ith direction.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 961–981 (1998)
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Figure 4. In the BEM, the surface is broken into N elements, and the weightings of the impulses are assumed to be
constant in an element. The ith component of velocity of the kth element is given by U& i

k=
�j=1

N 	dS% Gui(rk, r%) · f& fict,j dS %.

Ti=
&

S%

GTi(r%) · ffict(r%) dS %.

4.2. Boundary element methods

For most problems, ffict cannot be obtained by analytic techniques, and a numerical
approximation of the boundary integral method, the BEM, is used to obtain an approximation
of ffict [17]. With the BEM, the surface boundaries are broken into N elements with an
approximation of ffict in each element. There are many ways to approximate the continuous
BIM with a discrete representation. A constant approximation for ffict is used here, so that the
integrals of Equations (17) and (18) become sums, i.e.

Ui(r): %
N

j=1

&
dS %j

Gui(r, r%) · f& fict,j dS %j,

P(r): %
N

j=1

&
dS %j

Gp(r, r%) · f& fict,j dS %j.

f& fict is the piecewise constant approximation of ffict. A collocation method is used to obtain f& fict.
The surface is broken into N elements and Ui(r) is approximated as U& i

k, a piecewise constant
function, with U& i

k=Ui(rk), the velocity at the midpoint of the kth element. U& i
k is set to the

known boundary conditions Usurf,i(rk), so that

Usurf,i(rk)=U& i
k= %

N

j=1

&
dS %j

Gui(rk, r%) · f& fict,j dS %j. (21)

The midpoint of each element is known as the collocation point. f& fict is found by solving
Equation (21), for each element, for each component of the velocity (Figure 4).

4.3. Non-integrable singularities in the pressure and torque stokeslets

The pressure and torque stokeslets have non-integrable singularities on the boundary
surface. However, the torque on the body can still be calculated exactly, despite the non-inte-
grable singularity. This is because the integration over S need not be over the surface of the
body—any surface that encloses the stokeslets will suffice because the torque induced by the
fluid on a closed surface is zero, i.e.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 961–981 (1998)
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T=
&

S

r× (Pn− t̄n)=
&

V

r× (9P(r)−m92U(r)) dV=0,

where t̄ is a tensor that represents the fluid shear. Appendix B contains a derivation of this
result. The choice of surrounding surface for a hemispheroid is described in Section 7.4.

4.4. Simplifications for structures with rotational symmetry about the z-axis, with motions
only in the x–z-plane

Using Fourier analysis, we can derive the f % dependence of ffict(r%) for the spheroidal
structures that are considered in this paper. It can be shown [18] that for structures that
are symmetric about the z-axis, and with motions only in the x–z-plane, the hydrodynamic
pressure and velocity can be expressed as

P(j, h, f)= f1(j, h) cos f, (22)

Ux(j, h, f)= f2(j, h) cos2 f+ f3(j, h), (23)

Uy(j, h, f)= f4(j, h) cos f sin f, (24)

Uz(j, h, f)= f5(j, h) cos f, (25)

where f1, f2, . . . , f5 are general functions that together, with the indicated f dependencies,
solve Equations (1) and (2). The known f dependence of the pressure is used here to derive
the f % dependence of ffict. This analysis requires only boundary surfaces of spheroids, so
that ffict depends only on h % and f % and is independent of j %. The results are checked by
investigating whether the resulting velocities induced by the stokeslets have the correct f

dependence.
The steps of the method used to obtain the f % dependence are summarized as follows:

Step 1: Represent ffict(r%) as a Fourier series in f %,

ffict(h %, f %)= %
�

j=0

((ãxj(h %) cos(jf %)+b0 xj(h %) sin(jf %))x̂+ (ãyj(h %) cos(jf %)+b0 yj(h %) sin(jf %))ŷ

+ (ãzj(h %) cos(jf %)+b0 zj(h %) sin(jf %))ẑ). (26)

Step 2: Express Gp(r, r%) in spheroidal co-ordinates.
Step 3: Calculate P(r)=	 Gp(r, r%) · ffict(h %, f %) dh % df. Let f¦=f %+f, and perform the
integration in f¦ instead of f %. This shift simplifies the integration, but does not affect it
because the integral is over a full period. The terms that are odd functions of f¦ integrate
to zero.
Step 4: See which terms of the Fourier series of ffict(r%) give the pressure terms with cos f

dependence.
Step 5: The result is

ffict,x(h %, f %)=ax0(h %)+ax2(h %) cos2 f %, (27)

ffict,y(h %, f %)=ax2(h %) sin f % cos f %, (28)

ffict,z(h %, f %)=az1(h %) cos f %, (29)

where ax0(h %)= ãx0(h %)− ãx2(h %), ax2(h %)=2ãx2(h %), and az1(h %)= ãz1(h %). A similar method
was used by Pozrikidis [7], who performed the analysis in cylindrical co-ordinates. Ap-
pendix C contains a more detailed derivation.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 961–981 (1998)



SHEAR FLOW OVER PROTUBERANCE 969

5. ANALYSIS FOR FULL SPHEROIDS

The results of the present method applied to a stationary full spheroid in longitudinal shear
flow are described in this section. The numerics will be further simplified by using symmetry
to predict the stokeslet weightings in the lower half of the spheroid. There are known exact
solutions (see Appendix D), therefore, we can check our results. This exercise also serves as a
partial check of this method applied to a hemispheroid on a plane wall because there is much
overlap in the numerical code used to solve the two problems.

5.1. Boundary conditions

For longitudinal shear flow, let the fluid velocity far from the spheroid be represented by
−Vz x̂. If reference frames are shifted to be such that the fluid is stationary at infinity, the fluid
velocity along the surface of the spheroid, in the new reference frame, is given by

U(j=jo, h, f)=Vz x̂.

Exact solutions to the Stokes equation with these boundary conditions, as well as those for
cross flow, are found in Appendix D.

5.2. Symmetry

Because the spheroid and boundary conditions are symmetric about the equatorial plane,
only a half contour of constant f above the equator needs to be discretized, provided an image
stokeslet is added or subtracted to the stokeslet. The x- and y-components of stokeslets due to
impulses in x̂ are symmetric about the equatorial plane, as is the z-component of stokeslets due
to impulses in ẑ. The other stokeslets are antisymmetric. Since the boundary conditions are
symmetric in ẑ but are antisymmetric in x̂, the sign of the image stokeslets in x̂ are negative.

5.3. The numerical method

The Green’s functions are integrated numerically with respect to h % using an iterative
trapezoidal rule with a user specified relative accuracy set by a parameter e, which is defined
as

e=
�anew−aold�

anew

,

where anew is the latest estimate and aold is the previous estimate. The matrix is inverted using
Mathematica’s inverse subroutine [19], which inverts this type of matrix by Gaussian elimina-
tion.

5.4. The torque calculation

The calculation of the torque is somewhat more complicated than that of velocity and
pressure because an additional integration over the surface is required. Using Equations (19)
and (20), the torque, which, for the structures considered here, is completely in ŷ, can be
expressed as

Ty:
&

S

dS %
N

j=1

&
dS %j

G( ti(r, r%) · f& fict,j dS %j.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 961–981 (1998)
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The torque can be found by first analytically integrating G( ti(r, r%) over f % and f, numerically
integrating over dh %, summing the dot product of the result and the fictitious sources,
integrating over dh, and then summing the result, giving

Ty: %
N

k=1

& pk/N

p(k−1)/N

dhh1(h, j)h2(h, j)

× %
N

j=1

& pj/N

p( j−1)/N

dh %h1(h %, j %)h2(h %, j %)
&

f

df
&

f%

df %G( ti(rk, r%) · f& fict,j

=2 %
N/2

k=1

& pk/2N

p(k−1)/2N

dhh1(h, j)h2(h, j)ĝ1,k,

with

ĝ1,k= %
N/2

j=1

& pj/2N

p( j−1)/2N

dh %h1(h %, j %)h2(h %, j %)
&

f

df
&

f%

df %(G( ti(rk, r%)9G( ti(rk, r%image)) · f& fict,j,

where ĝ1,k is a piecewise constant function. The + is used for the stokeslets due to impulses
in ẑ and the − for stokeslets due to impulses in x̂. To obtain a better approximation to the
torque, a fitted polynomial approximation to ĝ1,k is used, i.e.

Ty:2
& p/2

0

h1(h, j)h2(h, j)g1(h) dh,

where g1(h) is the fitted polynomial to ĝ1,k.

6. RESULTS FOR FULL SPHEROIDS

To understand the sources of error in our torque calculation, the normalized torque Ty/(mV)
was computed for different shapes (Figure 5) and the results compared with those of the exact
solution (Table I). We also verified our code by checking that the torque on different surfaces
surrounding the spheroid is the same—this implies that the torque induced by the fluid is zero
and that Stokes equation is satisfied. The spheroid is denoted by a surface of constant jo, and
the different surrounding surfaces are denoted by j.

Three features are evident: the error is small (maximum error is 1.6% for N=4); the error
decreases with the distance between the surrounding surface and the spheroidal surface; and
the error decreases (although not monotonically) with increasing N. The decrease with N is to
be expected—the piecewise constant approximation improves with increasing N ; the fact that
the decrease is not monotonic may be due to the additional source of error in the torque
calculation coming from the polynomial fit approximation. The decrease in error with distance
can be understood—as the distance from the surface of the spheroid increases, the distance
from the non-integrable singularities increases, and the numerical integration can be performed
more accurately.

7. HEMISPHEROID PROJECTING FROM A PLANE WALL

7.1. Boundary condition along plane wall

The problem of a hemispheroid projecting from a plane wall is similar in many ways to the

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 961–981 (1998)
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problem of a full spheroid. It has the same axial symmetry, and the motion of the body is
solely in the x–z-plane. Therefore, the f dependence of the stokeslet weightings is known. The
main difference in applying the present method to a hemispheroid projecting from a plane wall
is satisfying the boundary condition along the infinite plane wall. We could discretize a contour
along the wall in addition to the contour along the hemispheroid, and find the stokeslet
weightings that would satisfy the boundary conditions, but the computational domain must be
finite. Therefore, artificial boundaries would have to be introduced in the fluid at some distance
away from the hemispheroid, but the use of artificial boundaries would introduce errors. An
alternate method, the method used here, is to use a Green’s function that has the correct
boundary conditions along the plane wall.

Figure 5. The spheroids for which the torque was calculated (solid lines) along with the enclosing surfaces (dotted
lines) used in the calculation.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 961–981 (1998)
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Table I. Results for the normalized torque, Tny=Ty/(mV), calculated for
spheroids with different jo

% error N j joAnalytic Numeric

54 5.011.6−12.57 −12.77
8 5.01−12.57 −12.52 0.4 5

55.01161.2−12.57 −12.42
32 5.01−12.57 −12.56 0.1 5
64 5.01−12.57 −12.55 0.2 5

6.008 50.1−12.57 −12.56
11.01−10.18 −10.11 0.7 8
12.0080.1−10.18 −10.17

8 0.60−7.18 −7.15 0.4 0.50
16 0.60−7.18 −7.18 0.0 0.50

0.5032 0.600.0−7.18 −7.18
0.0 8 1.00 0.1−3.33 −3.33

The torque is calculated on different surfaces surrounding the spheroid (the surfaces are
denoted by j), for different discretizations (N).

7.2. The Green’s function for a stokeslet in the presence of a plane wall

The jth component of the Green’s function for velocity due to a stokeslet in the kth
direction in the presence of a plane wall can be expressed as [13]

Gu,wall,j
k (r, r%)=Gu, j

k (r, r%)−Gu, j
k (r, r%image)+Guw, j

k (r, r%image),

where Gu, j
k (r) is the jth component of velocity due to a stokeslet in the kth direction with no

wall present, r %image=x %x̂+y %ŷ−z %ẑ, and Guw, j
k (r, r%image) satisfies Stokes equation, and has the

necessary velocity along the wall to ensure that Gu,wall,j
k (r, r%) equals zero along the wall.

Guw, j
k (r, r%image) can be expressed as

Guw, j
k (r, r%image)=

1
4pm

z %(dkadal−dk3d3l)

×
(

((xl−x %image)
�z %(xj−x %j,image)

�r−r%image�3
−
� dj 3

�r−r%image�
+

(xj−x %j,image)(z+z %)
�r−r%image�3

�n
,

where dij represents the Kronecker delta function. The Green’s function for pressure due to a
stokeslet in the kth direction in the presence of a wall can be expressed as

Gp,wall
k (r, r%)=Gp

k(r, r%)−Gp
k(r, r%image)+Gpw

k (r, r%image),

where Gp
k(r) is the pressure due to a stokeslet in the kth direction with no wall present, and

Gpw
k (r, r%image) accounts for the presence of the wall,

Gpw
k (r, r%image)=

−z %
2p

(dkadal−dk3d3l)
(

((xl−x %l,image)
z+z %

�r−r%image�3
.

These Green’s functions are mathematically equivalent to a Stokes doublet and source doublet
in the image plane [13].

7.3. Method for hemispheroid projecting from a plane wall

For the full spheroid, the hydrodynamics were represented as a weighted integral of
stokeslets. For the hemispheroid projecting from a wall, the hydrodynamics will be represented
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as a weighted integral of the vector sum of a stokeslet, an image stokeslet, a Stokes doublet
and a source doublet.

As mentioned above, the f dependence of the weightings are already known. To obtain the
source weightings in h, a similar procedure to the one outlined for the full spheroid is used,
except that we have additional sources to the stokeslet and image stokeslet.

7.4. The torque calculation for a hemispheroid projecting from a plane wall

Because of the presence of the infinite plane wall, a surface surrounding the sources cannot
be used to calculate the torque. However, the torque can be calculated by integrating over the
surface indicated by the dashed lines in Figure 6, because the torque induced by the fluid on
the surface described by the hemispheroid and the dashed lines is equal to zero. Therefore, the
torque along the dashed lines is equal to the negative of the torque induced by the fluid on the
hemispheroid.

7.5. Check that the torque on a surface that encloses only fluid is zero

If Stokes equation is satisfied, then the torque on a surface that encloses only fluid must be
zero. To test that this was so, we performed the following calculation. We computed the torque
along three different surfaces indicated by the dashed curves in Figure 7. The indicated
surfaces, along with the surface of the hemispheroid, encloses only fluid. Therefore the total
torque computed along the surfaces is zero. This implies that the torque calculated for the
surfaces indicated by the dashed curves must be equal to the negative of the torque calculated
along the surface of the hemispheroid. We checked that the torque computed for several
different surfaces in the fluid remains the same. Figure 7 illustrates the enclosing surfaces as
well as the torques for a nearly hemispherical shape. We see that the difference in torque is
B3%. The errors derive from the discretization and the polynomial fit used in the torque
calculation (see Section 5.4).

Table II illustrates the results for Figure 7 as well as the results for a thin, prolate
hemispheroid, jo=0.5. For the thin, prolate hemispheroid, the differences were B0.1%.

Figure 6. The torque on the surface indicated by the dashed lines is equal to the negative of the torque on the
hemispheroid. The solid line indicates the hemispheroid.
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Figure 7. The dashed lines indicate j=j1, the surfaces for which the torque was computed. The solid line indicates
the surface of the hemispheroid, j=jo=5. The sum of the torques computed for surfaces indicated by solid and
dashed lines is zero since the surfaces enclose fluid. Three different surfaces in the fluid were chosen. The torque for
the three dashed surfaces must be the same and must be equal to the negative of the torque for the hemispheroidal

surface.

Table II. The torque computed along surfaces for different hemispheroid
shapes

j joTorque N1 N2

−7.621 8 8 55.01
5−7.644 6.008 100

7.00−7.626 8 5100
5−7.632 8 200 7.00
0.5−4.050 0.50116 8
0.5−4.053 16 25 0.60
0.5−4.053 0.7016 50

N1 denotes the number of elements along the hemispheroidal contour. N2 denotes the
number of elements used along the wall. A polynomial fit of the torque/h was used to
perform the integration along the contours.
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Table III.

Our results Other resultsjo

7.67 7.705
0.55 15.40 15.40

44.00.2 43.3
100 94.20.1

8. COMPARISON OF RESULTS FOR OBLATE HEMISPHEROIDS WITH THOSE OF
A PREVIOUS STUDY FOR LONGITUDINAL SHEAR

Table III shows a comparison of our results with those of a previous study [7], for oblate
hemispheroids for longitudinal shear. The percentage difference is very small (B0.2%) for
narrower oblate hemispheroids and is largest (6%) for the extremely wide oblate hemispheroid.
The increase in error may be due to the effect of the artificial boundaries used in the other
method, which would be larger for wider hemispheroids.

9. RESULTS FOR THE FULL RANGE OF SHAPES FOR FULL SPHEROIDS AND
HEMISPHEROIDS

9.1. Hydrodynamic torque

The hydrodynamic torque as a function of shape is illustrated in Figure 8. The parameter jo

defines the shape. As jo��, the shape of prolate and oblate spheroids approaches spherical.
As jo�0, these shapes become the most eccentric, with the shape of a prolate spheroid
approaching that of a line segment, and the shape of an oblate spheroid approaching that of
a thin, wide disk. The hydrodynamic torque for hemispheroids with longitudinal shear (which
results from translational motion) is illustrated in the left panel of Figure 8. The torque is
normalized by the cube of the height of the hemispheroid. With this normalization, the torque
varies by less than an order of magnitude for the full range of shapes. For translational
motion, for thin prolate hemispheroids, the torque for the hemispheroid projecting from a

Figure 8. Left panel: The normalized, hydrodynamic torque for translational motion, Ttyn=Tty/(Vh3). Right panel:
The normalized, hydrodynamic torque for rotational motion, Tryn=Try/(VQ), where Q=h3 for prolate shapes and
Q=hw2 for oblate shapes. For both panels, p indicates prolate hemispheroids, o indicates oblate hemispheroids, and

the solid lines indicate full spheroids, both oblate and prolate.
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plane wall is half that of a full spheroid. This result is probably because the surface area of a
hemispheroid is half that of a full spheroid and the plane wall has little effect on the
hydrodynamics for thin prolate hemispheroids. As the shape becomes wider, the plane wall has
more influence on the hydrodynamics along the surface of the hemispheroid, and the torque
becomes larger than half that of a full spheroid.

The right panel of Figure 8 illustrates the hydrodynamic torque for rotational motion which
can be obtained by taking the difference in the hydrodynamic torques for longitudinal shear
and cross shear. To keep the range of values of the torque minimal we normalize by height
cubed for prolate hemispheroids and by the product of height and width squared for oblate
hemispheroids. We see the same trends as with translational motion, but the effect of the plane
wall is more pronounced, especially for wide oblate hemispheroids. Except for very wide oblate
hemispheroids, the hydrodynamic torque for the hemispheroid projecting from a plane wall is
within a factor of two of that of a full spheroid with the same shape.

10. CONCLUSIONS

An indirect BEM method using spheroidal co-ordinates that efficiently and accurately compute
the hydrodynamic parameters for a hemispheroid projecting from a plane wall in shear flow
has been illustrated. The validity of the method was shown by applying it to a case where there
is an exact solution (full spheroids in shear flow) and by comparing the results with those of
a previous study for oblate hemi-spheroids. It has been shown that the hydrodynamic torque
for hemispheroids projecting from plane walls has a similar shape dependence as those of full
spheroids, and that for all but very wide, oblate shapes, the hydrodynamic torque for a
hemispheroid projecting from a plane is within a factor of two of that of a full spheroid.
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APPENDIX A. TORQUE DUE TO FLUID VELOCITY, Vz x̂ or Vx ẑ

The torque due to shear on the hemispheroid can be expressed as

Ty=
&

S

(zFx−xFz) dS,

with Fxi
as

Fxi
=m

�(Uxi

(xj

+
(Uxj

(xi

�
nj.

For U=Vz x̂ or U=Vx ẑ, Fx=mnz and Fz=mnx. In prolate spheroidal co-ordinates, nz=
sinh j cos h/
sinh2 j+sin2 h, and nx=cosh j sin h cos f/
sinh2 j+sin2 h, and integrating
around the hemispheroidal surface,

Ty=
& p/2

0

& 2p

0

dh dfmL3 sinh2 jo sin h cosh jo(cos2 h−sin2 h cos2 f)=0.
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APPENDIX B. PROOF THAT THE TORQUE EXERTED BY FLUID ON A
SURROUNDING SURFACE IS ZERO

We can represent the equation for Stokes flow in tensor form, i.e.

(Tij

(xj

=0, (30)

where

Tij= −pdij+m
�(uj

(xi

+
(ui

(xj

�
.

Using the divergence theorem and Equation (30), we can show that the force exerted by the
fluid on a surrounding surface is zero, i.e.

Fi=
&

S

Tijnj dS=
&

V

(Tij

(xj

dV=0.

The torque exerted by the fluid on a surrounding surface can be represented as

T=
&

S

eijkxjTklnl dS, (31)

where eijk is the well-known ‘completely antisymmetric tensor’,

eijk=Í
Á

Ä

1
−1

0

if ijk=123, 312, 231
if ijk=213, 132, 321
otherwise.

The divergence theorem can be applied to Equation (31), so that

T=
&

S

eijkxjTklnl dS=
&

V

eijk

(

(xl

(xjTkl) dV.

Since

eijk

(

(xl

(xjTkl)=eijkxj

(Tkl

(xl

+eijkTkl

(xj

(xl

,

and

eijkTkl

(xj

(xl

=0,

using Equation (30), we see that the torque exerted by the fluid on a surrounding surface is
zero, i.e.

T=
&

V

eijk

xj (Tkl

(xl

dV=0.
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APPENDIX C. THE USE OF FOURIER ANALYSIS TO DERIVE THE f %
DEPENDENCE OF ffict(r%)

ffict(r%) is expressed in a Fourier series as in Equation (26). Equation (18), the pressure stokeslet,
can be expressed in prolate spheroidal co-ordinates as

Gpx(j, h, f, j %, h %, f %)=
(c1(j, h) cos f−c1(j %, h %)(cos f¦ cos f−sin f¦ sin f))


a(j, h, j %, h %)−b(j, h, j %, h %) cos f¦3
, (32)

Gpy(j, h, f, j %, h %, f %)=
(c1(j, h) sin f−c1(j %, h %)(cos f¦ sin f+sin f¦ cos f))


a(j, h, j %, h %)−b(j, h, j %, h %) cos f¦3
, (33)

Gpz(j, h, f, j %, h %, f %)=
d(j, h, j %, h %)


a(j, h, j %, h %)−b(j, h, j %, h %) cos f¦3
, (34)

where

f¦=f %−f,

a(j, h, j %, h %)=L2(cos2 h+sinh2 j)+L %2(cos2 h %+sinh2 j %)

−2LL % cos h cos h % cosh j cosh j %,

b(j, h, j %, h %)=2LL % sin h sin h % sinh j sinh j %,

c1(j, h)=L sinh j sin h,

d(j, h, j %, h %)=L cosh j cos h−L % cosh j % cos h %.

By substituting Equation (26) into (17), the expressions for the pressure due to impulses in the
x-, y- and z-directions can be written as

P(r)�x=
& p

0

h1(j %, h %) dh %
& 2p

0

h2(j %, h %) df %Gpx(j, h, f, j %, h %, f %)

× %
�

j=0

(ãxj(h %) cos(jf %)+b0 xj(h %) sin(jf %)), (35)

P(r)�y=& p

0

h1(j %, h %) dh %
& 2p

0

h2(j %, h %) df %Gpy(j, h, f, j %, h %, f %)

× %
�

j=0

(ãyj(h %) cos(jf %)+b0 yj(h %) sin(jf %)), (36)

P(r)�z=& p

0

h1(j %, h %) dh %
& 2p

0

h2(j % ,h %) df %Gpz(j, h, f, j %, h %, f %)

× %
�

j=0

(ãaz(h %) cos(jf %)+b0 zj(h %) sin(jf %)), (37)

with Gpx(j, h, f, j %, h %, f %), Gpy(j, h, f, j %, h %, f %) and Gpz(j, h, f, j %, h %, f %) given by Equa-
tions (32)–(34), and h1(j %, h %) and h2(j %, h %), the metric coefficients for prolate spheroidal
co-ordinates,

h1(j %, h %)=L %
sin2 h %+sinh2 j %,

h2(j %, h %)=L % sin h % sinh j %.
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With f %=f¦+f, cos f %=cos f¦ cos f−sin f¦ sin f, and sin f %=sin f¦ cos f+
cos f¦ sin f, Equations (35)–(37) can be expressed as

P(r)�x=
& p

0

h1(j %, h %) dh %
& 2p

0

h2(j %, h %) df¦Gpx(j, h, f, j %, h %, f %)

× %
�

j=0

(ãxj(h %)(cos jf¦ cos jf−sin jf¦ sinjf)

+b0 xj(h %)(sin jf¦ cos jf+cos jf¦ sin jf)),

P(r)�y=& p

0

h1(j %, h %) dh %
& 2p

0

h2(j %, h %) df¦Gpy(j, h, f, j %, h %, f %)

× %
�

j=0

(ãyj(h %)(cos jf¦ cos jf−sin jf¦ sin jf)

+b0 yj(h %)(sin jf¦ cos jf+cos jf¦ sin jf)),

P(r)�z=& p

0

h1(j %, h %) dh %
& 2p

0

h2(j %, h %) df¦Gpz(j, h, f, j %, h %, f %)

× %
�

j=0

(ãzj(h %)(cos jf¦ cos jf−sin jf¦ sin jf)

+b0 zj(h %)(sin jf¦ cos jf+cos jf¦ sin jf)),

Since f % is integrated over a full period of 2p, the integration can equally be performed over
a full period in f¦.

By substituting Equations (32)–(34) into the above expressions for Px(r), Py(r) and Pz(r)
and performing the integrations over a full period of f¦, we can determine which terms will
give only a cos f dependence. Note that odd functions of f¦ integrate to zero. One possible
term is the ãx0(h %) term. Two other possible terms are ãx2(h %) cos 2f % and b0 y2(h %) sin 2f % if
ãx2(h %)=b0 y2(h %). The only other term possible is ãz1(h %) cos f %. Therefore, ffict(h %, f %) can be
expressed as

ffict,x(h %, f %)= ãx0(h %)+ ãx2(h %) cos 2f %, (38)

ffict,y(h %, f %)= ãx2(h %) sin 2f %, (39)

ffict,z(h %, f %)= ãz1(h %) cos f %. (40)

Equations (38)–(40) are consistent with those found in References [7] (S. Haber, personal
communication), and also give the correct f dependence of the velocities expressed in
Equations (23)–(25).

To facilitate the analytic integration in f %, we will use equivalent representations of
Equations (38)–(40), given in Equations (27)–(29).

APPENDIX D. ANALYTIC SOLUTIONS

The analytic solutions are derived from Reference [14]. For the full spheroid with surface
velocity equal to Vz x̂, the velocity is expressed as
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U(r)=a2x [(2A1+A3)ẑ+2(x x̂+y ŷ)B3,1]+g2[2x̂B1,1− ẑxA3]+4b29[x(L2B3,1−B3,3)],

with e=1/cosh jo and Le= log (1+e/1−e).
The function Bm,n(x, y, z) is defined as

B1,0= log
R2− (z−L)
R1− (z+L)

, B1,1=R2−R1+zB1,0,

B3,0=
1
r2

�z+L
R1

−
z−L

R2

�
, B3,1=

� 1
R1

−
1

R2

�
+zB3,0,

Bm,n= −
Ln−1

m−2
� 1

R2
m−2, +

(−1)n

R1
m−2

�
+

n−1
m−2

Bm−2,n−2+zBm,n−1 for n]2,

and

A1=zB3,1−B3,2, A3=L2B3,0−B3,2,

g2=V[−2e+ (1+e2)Le ]−1,

a2=e2g2[−2e+ (1−e2)Le ][2e(2e2−3)+3(1−e2)Le ]−1,

b2=a2(1−e2)/(4e2).

The pressure is expressed as

P(r)=a2
& L

−L

2(L2−z %2)3x(z−z %)


x2+y2+ (z−z %)25
dz %.

The torque for this case is described by

T=
−32

3
pmŁ3g2ŷ.

For the full spheroid with surface velocity equal to −Vx ẑ, the velocity is expressed as

U(r)=a3x [(2A1+A3)ẑ+2(x x̂+y ŷ)B3,1]+g3[2x̂B1,1− ẑxA3]+4b29[x(L2B3,1−B3,3)],

with

g3=V(1−e2)[−2e+ (1+e2)Le ]−1,

a3=2e2g3[−2e+Le ][2e(2e2−3)+3(1−e2)Le ]−1,

b3=a3(1−e2)/(4e2).

The pressure is expressed as

P(r)=a3
& L

−L

2(L2−z %2)3x(z−z %)


x2+y2+ (z−z %)25
dz %.

The torque for this case is described by

T=
−32

3
pmŁ3g3ŷ.

The exact solutions for oblate spheroids can be derived from the solutions for prolate
spheroids by letting cosh jo� j sinh jo, and L�− jL.
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